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Abstract. No single universal image set representation can efficiently
encode all types of image set variations. In the absence of expensive
validation data, automatically ranking representations with respect to
performance is a challenging task. We propose a sparse kernel learning
algorithm for automatic selection and integration of the most discrimi-
native subset of kernels derived from different image set representations.
By optimizing a sparse linear discriminant analysis criterion, we learn
a unified kernel from the linear combination of the best kernels only.
Kernel discriminant analysis is then performed on the unified kernel.
Experiments on four standard datasets show that the proposed algo-
rithm outperforms current state-of-the-art image set classification and
kernel learning algorithms.

1 Introduction

In image-set classification, labelled training data consists of one or more sets
per class where each set contains multiple images of the same class. The test set
also contains multiple instances of the same class and is assigned the label of
the nearest training set by maximizing some similarity measure [1–7]. Image set
classification is useful in a wide range of applications including video-based face
recognition, video surveillance, person re-identification in camera networks and
object categorization.

Image-set classification is often performed in two steps. First, a representa-
tion is used to encode the intra-image as well as inter-image variations within
a set based on some assumptions on the set structure. In the second step, the
similarity between the image-set representations is measured, usually under cer-
tain constraints such as sparsity. Classification accuracy strongly depends on
the specific set representation and the underlying assumptions and constraints.
Most researchers focus on finding accurate image set representations. However,
no single universal set representation can efficiently encode all types of image
set variations. Image set representations make assumptions about the underlying
data. Some assume that the underlying set data is single mode Gaussian [8, 9,
7, 10] whereas it may be multi-modal or non-Gaussian. Others assume that an
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Fig. 1. Illustration of Sparse Kernel Learning. Haff
i , µi, Ci and Ui are the affine

hull, mean, covariance and subspace representations of image sets Xi. During training,
SKL computes a pool of base kernels from different image set representations and
automatically learns the best unified kernel from their sparse combination. In the test
stage, only the kernels corresponding to the non-zero weights are computed.

image set can be represented by linear subspace bases [5, 11] whereas the ac-
tual data may lie on complex manifolds [2, 6]. Moreover, in the presence of only
few images per set, the estimation of subspace bases and manifold parameters
may be inaccurate. Some image set classification algorithms [3, 4] are variants of
nearest neighbour whereas the image sets may overlap in some low dimensional
space. Thus, no single representation performs good in all cases. In the absence
of validation data, automatic selection of the most discriminative representations
is a challenging problem. Moreover, there is a lack of systematic procedure for
the selection and integration of efficient image set representations.

One solution to the above problem is along the lines of Multiple Kernel Learn-
ing (MKL) [12] where different types of features are expressed in terms of kernels
and effectively integrated for improving classification. These have been applied
to different computer vision tasks such as object categorization [13], object de-
tection [14], multi-class object classification [15] and image set classification [1,
16]. In the case of image set classification, a pool of base kernels can be derived
using different image set representations and their associated distance measures.
A unified kernel can then be learned from their combination. Recently, Lin et al.
[17] proposed a multiple kernel learning algorithm for dimensionality reduction
(MKLDR). In MKLDR algorithm, the image data is represented by different
features from which a set of base kernels is derived. The weighted combination
of these base kernels are then used to learn a discriminative low dimensional sub-
space for classification. In MKLDR, all features are considered important and
the weights assigned to different kernels do not necessarily correspond to their
exact performance ratios [17]. Thus, the kernel combination using this strategy
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(a) Honda (b) Youtube (c) ETH-80 (d) Cambridge

Fig. 2. Sparse kernel learning (SKL): Top row Individual accuracies of the kernels
derived from each image set representation using their associated distance measures.
Affine hull [3] (Ka), Affine hull [4] (SANP distance Ks), mean (Km), subspace bases
(Kb), Covariance (log-Euclidean kernel Kl), Covariance (Cholesky kernel Kc), Manifold
[2] (MMD kernel Kd) (see Section 3) Middle row Weights learned by the MKLDR
algorithm [17]. Bottom row Sparse weights learned by the proposed algorithm.

can reduce the overall classification accuracy (see Table 2) because a higher
weight assigned to a poor feature degrades the quality of the overall mixture.

We propose a sparse kernel learning (SKL) algorithm that automatically
learns a subset of the most discriminative base kernels derived from a pool of
image set representations and their associated distance measures (see Fig. 1).
Given a large number of image set kernels, our goal is to learn sparse kernel
weights, without using validation data, such that the sparse combination of these
kernels minimize intra-set distances and maximize inter-set distance. To the best
of our knowledge, sparse kernel learning has not been formulated previously for
image set classification. We impose sparsity on the kernel learning such that poor
performing kernels are discarded and the final mixture is more discriminative.
An additional advantage of sparsity is that only a few kernels are required to be
computed at runtime. Fig. 2 shows the effectiveness of the proposed SKL algo-
rithm. In the case of Youtube dataset, the MKLDR algorithm assigned weights
to all the image set kernels which has degraded the overall accuracy. In the case
of ETH-80 dataset, MKLDR assigned the highest weight to the MMD kernel Kd

(derived from the manifold representation). However, the MMD kernel is not the
best performer on this dataset. In contrast, MKL automatically learns a subset
of the most discriminative kernels (subspace kernel Kb and Cholesky kernel Kc)
while assigning zero weights to the others.

The SKL objective function is formulated as a graph embedding linear dis-
criminant analysis criterion with `1 norm regularization. The enforcement of
sparsity ensures that only the most discriminant image set kernels get non-zero
weights. Once we obtain the unified kernel by the sparse linear combination
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of the most discriminative image set kernels, we perform Kernel Linear Dis-
criminant Analysis (KLDA) based classification. For experiments, we use four
standard datasets and derive seven image set kernels. Our results outperform the
MKLDR algorithm [17] as well as seven state-of-the-art image set classification
algorithms.

2 Proposed Method

2.1 Problem Formulation

Let G ≡ {Xj}gj=1 ∈ Rd×N be the gallery containing g image sets and N images:

N =
∑g
j=1 nj , where nj is the number of images in the j-th image set. Let Xj =

{xij}
nj
i=1 ∈ Rd×nj be the j-th image set, where xij ∈ Rd is a d dimensional feature

vector obtained by lexicographic ordering of the pixel elements of the i-th image
in the j-th set. Instead of pixel values, the vector xij may also contain feature
values such as LBP or HoG features. The value of nj may vary across image
sets while the dimensionality of xij remains fixed. Let c be the number of object
classes and Y = {yj}gj=1 be the class labels of the image sets in G. A distance

matrix dr ∈ Rg×g is obtained for the gallery G such that dr(i, j) = dr(Xi, Xj) is
the distance between sets Xi and Xj using a distance measure r. Let R be the
total number of distance measures each of which generating a distance matrix
dr. We convert each distance matrix dr to a kernel matrix Kr using the Gaussian
function as

Kr(i, j) = e
(
−dr(i,j)
σ2r

)
, (1)

where σr is a Gaussian scale factor. The ith column of the kernel matrix Kr

shows the relative position of the set Xi w.r.t. all other sets in the gallery.
Therefore, we consider Kr(i) ∈ Rg a feature vector describing the set Xi. For R
different distance measures, Xi has R different features descriptions. Our goal
is to select a subset L < R features such that when they are combined, their
overall discrimination capability is maximized. For this purpose we propose to
use the graph embedding linear discriminant analysis with sparsity constraints.

2.2 Sparse Kernel Learning

We represent Xi with a tensor Ti = [K1(i), ...,KR(i)] ∈ Rg×R which is formed
by concatenating all feature descriptors of Xi. For the gallery G we have g such
matrices Gt ≡ {Ti}gi=1. For the graph embedding linear discriminant analysis
the within class scatter matrix Sw and the between class scatter matrix Sb are
formulated in a pairwise manner

Sw =

g∑
i,j=1

wij(Ti − Tj)>(Ti − Tj), (2)

Sb =

g∑
i,j=1

ẃij(Ti − Tj)>(Ti − Tj). (3)
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where wij =

{
1/nk if (Ti, Tj) ∈ ck,

0 otherwise,
and ẃij = 1/g, nk are the number of image

sets in class ck with label yk.
In conventional graph embedding discriminant analysis [18], a projection ma-

trix is learned such that the between-class similarity is minimized and the within-
class similarity is maximized. In contrast, we formulate a sparse linear discrimi-
nant analysis criterion to learn an optimal linear combination of different features
Kr(i). We make the weight learning sparse so that the non-discriminative fea-
ture descriptors get zero weights while the more discriminative ones get high
weights. Therefore, we formulate the following objective function for performing
sparse discriminant analysis on Sw and Sb. The aim is to maximize the linear
discriminant objective function with additional `1 and `2 norms regularizations:

min
Q

(
trace(Q>(Sw − Sb)Q) +

∑
j

λj‖qj‖1 + α‖Q‖22
)

s.t. Q>Q = I, (4)

where qj is the jth column of Q, α is a constant and λj are the coefficients of
`1 norm. Minimizing the scatter difference term means that the optimal projec-
tions Q∗ should be able to minimize the within-class scatter Sw and maximize
the between-class scatter Sb. The scatter difference term of the above objective
function (4) is similar to the Max Margin Criterion [19] whereas the `1 norm
regularization is added to ensure sparse solutions and the term α‖Q‖22 is the
positive ridge penalty. The approximate sparse solutions of (4) can be obtained
by rewriting the objective function as a set of Sparse PCA criteria [20]:

min
Q

‖Ψ>D − UQ>D‖2 +
∑
j

λj‖qj‖1 + α‖Q‖22 s.t. U>U = I. (5)

where Ψ and D are obtained from the SVD of Sw − Sb: Sw − Sb = ΨΣΨ>

and D = Ψ
√
abs(Σ)Ψ>. Algorithm 1 shows the proposed method to solve the

objective function in 5.
Once the termination criteria in the algorithm 1 is met, we obtain a final

sparse projection matrix Q which is computed by SVD. The weight vector θ ∈
RR corresponds to the most dominant eigenvector in the projection matrix Q.
The index i of the weight vector θ contains the weight of the feature Kr(i). We
ignore the sign of individual coefficients in θ by taking its absolute. Finally, θ is
used to obtain a sparse linear combination of different image set kernels.

2.3 Kernel Discriminant Analysis based Classification

Since each Kr is symmetric, therefore; they can be converted to valid kernel
matrices and subsequently used in a kernel based classification such as Kernel
Linear Discriminant Analysis. Moreover, each Kr must be positive semidefinite
to be a valid kernel matrix. This is not always guaranteed for each Kr. Therefore,
we make Kr semipositive definite by simply adding a small perturbation to its
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Algorithm 1 Sparse Kernel Learning Algorithm

Require: Sw and Sb from (2) and (3), Ct

Ensure: Weight vector θ
L⇐ Sw − Sb

L⇒ ΨΣΨ> {SVD of L}
D ⇐ Ψ

√
abs(Σ)Ψ>

D ⇒ UΛU> {SVD of D}
Q∗ = 0R×R, ∆Q = 105, ε = 10−3, c = 0
while ∆Q > ε and c < Ct do
Qold = Q∗

Q∗ ≡ min ‖Ψ>D−UQ>D‖2+
∑

j λj‖qj‖1+α‖Q‖22 {Solve the Elastic Net problem}
LQ∗ ⇒ QΩV > {SVD of LQ∗}
U ⇐ QV >

∆Q = max(abs(Qold(:)−Q∗(:)))
c = c+ 1

end while
θ ⇐ Dominant eigenvector in Q

diagonal (the absolute of its smallest non zero eigenvalue). After making all the
Kr semipositive definite we can now linearly combine them in a weighted manner
using θ to form a unified kernel matrix K

K =

R∑
r=1

θ(r)Kr, (6)

where θ is the sparse weight vector calculated using algorithm 1. From the the-
ory of Reproducing Kernel Hilbert Space (RKHS) it is well known that the
superposition of two valid kernels gives a new valid kernel [21]. Therefore, the
proposed unified kernel K can be used with any kernel based learning algorithm
to perform classification.

In this paper, we perform Kernel Linear Discriminant Analysis for classi-
fication. Having obtained K, KLDA seeks to solve the following optimization
problem

αopt = arg max
α>KWKα

α>KKα
, (7)

where α = [α1, ..., αg]
>, and W ∈ Rg×g is a block diagonal matrix: W =

diag{W1,W2, ...,Wc}, where Wj ∈ Rnk×nk is a matrix with all elements equal
to 1/nk. The optimal α is given by the largest eigenvectors of the

(KK + εI)−1(KWK)α = λα, (8)

Note that K is often a full rank matrix however, this is not guaranteed. There-
fore, a regularization term ε is used to ensure that KK remains invertible. By
selecting the (c− 1) dominant eigenvectors from the solution of (8), we obtain a
transformation matrix α̂ = [α1, ..., αc−1]. For a test image set Xt we first calcu-
late Tt ∈ Rg×R where Tt(i) = Ki(G,Xt). The c− 1 dimensional KLDA feature
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vector Yt of Tt in the discriminant subspace is computed as

Yt = α̂>Ttθ. (9)

Finally, to find the label of Yt we use the nearest neighbour classifier in the
KLDA feature space.

3 Image-set Representations and Kernels

The proposed algorithm is generic and works with any number of kernels derived
from different image set representations. In this paper we consider seven image
set representations and their respective set to set distance measures i.e. {dr}7r=1.
The distance measures are brought to the kernel domain by the Gaussian func-
tion of (1) as discussed in Section 1. The proposed SKL algorithm then learns a
unified kernel as the sparse linear combination of these kernels. A brief overview
of each type of image set representation and its respective kernel function is
given below.

i. Affine hull kernel (Ka) [3]: An image set is represented by the affine hull
model computed from the set samples. The affine hull based set-to-set dis-
tance is computed using the method in [3]. Let Ui and Uj denote the subspace
bases and µi and µj denote the mean of the two image sets Xi and Xj respec-
tively. Defining U ≡ [Ui −Uj ], ξi = µi−U(UTµi) and ξj = µj −U(UTµj),
the affine hull based image set kernel is given by

Ka(i, j) = e
(
−‖ξi−ξj‖2

σ2a
)

(10)

ii. SANP kernel (Ks) [4]: An image set is represented by the affine hull model
computed from the set samples and the samples themselves. Let Ui and Uj
denote the subspace bases and µi and µj denote the mean of the two image
sets Xi and Xj respectively. We compute the SANP kernel as

Ks(i, j) = e
(
(di+dj)D

∗

σ2s
)

(11)

where di and dj are the dimensionalities of the subspaces Ui and Uj respec-
tively (i.e. number of columns of Ui and Uj). D

∗ is the distance between
the sparse approximated nearest points (SANP) of the two sets obtained by
minimizing the following objective function [4]

D∗ = min
βi,βj ,vi,vj

(
‖µi + Uivi − (µj + Ujvj)‖22 + ω1(‖µi + Uivi −Xiβi‖22+

‖µj + Ujvj −Xjβj‖22) + ω2‖βi‖1 + ω3‖βj‖1
)

(12)
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iii. Mean kernel (Km): An image set is represented by the first order statistics
i.e. the mean of the set sample. Let µi and µj denote the mean of two image
sets Xi and Xj respectively. We compute the mean image set kernel as

Km(i, j) = e
(
−‖µi−µj‖2

σ2m
)

(13)

iv. Subspace kernel (Kb): Let Ui and Uj denote the subspace bases of two
image sets Xi and Xj respectively. We calculate the subspace based image
set kernel as

Kb(i, j) = e
(
−‖Ui−UjU

>
j Ui‖

2
F

σ2
b

)
(14)

where ‖ · ‖F denotes the Frobenius norm.

v. Log Euclidean kernel (Kl): An image set X is represented by its sample
covariance matrix C = XX>. Note that X is first mean centred. Let Ci and
Cj denote the sample covariance matrices of two image sets Xi and Xj . We
compute the Log Euclidean image set kernel as

Kl(i, j) = e
(
−‖ log(Ci)−log(Cj)‖

2
F

σ2
l

)
(15)

where ‖ · ‖F denotes the matrix Frobenius norm. The logarithm of the SPD
matrix C can be computed from its eigen-decomposition C = USUT by
log(C) = U log(S)UT where log(S) is a diagonal matrix of the scaler loga-
rithms of the eigenvalues of C.

vi. Cholesky kernel (Kc): A mean centered image set X is represented by its
sample covariance matrix C = XX>. Let Ci and Cj denote the sample
covariance matrices of two image sets Xi and Xj . We compute the as

Kc(i, j) = e
(
−‖Li−Lj‖

2
F

σ2c
)

(16)

where Li is a lower triangular matrix of the Cholesky decomposition Ci =
LiL

>
i .

vii. MMD kernel (Kd): An image set is represented as a collection of linear
patches on a manifold. The distance between two image sets Xi and Xj

is computed by using the manifold to manifold distance (MMD) method
presented in [2]. Specifically each image set is first clustered into multiple
linear local models. Each local model is represented by a linear subspace
and the mean of the local model. The MMD is then defined as the weighted
sum of the subspace distance and the mean distance between the nearest
local models. The MMD distance is then kernalized using (1).

These diverse image set representations encodes different characteristics of
the underlying set data based on different assumptions. For example, the mean
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Honda/UCSD Youtube celeberities 

ETH-80 Cambridge hand gestures 

Fig. 3. Dataset Details. HONDA/UCSD: Each row represents images from a dif-
ferent image set. Youtube celebrities: Each row represents sample images from an
image set. Two sets per subject are shown in this case. ETH-80: (a) Eight different
object categories. (b) 10 different objects within each category. (c) Sample images from
an image set of the cow category. Cambridge Hand Gestures: (a) Sample sequences
from nine gesture classes. (b) Five different illumination conditions in the database.

and covariance based representations show the position of the image set in high
dimensional space and assume the set data to be Gaussian. The mean and covari-
ance based representations may fail easily if the set data is multimodal. Similarly,
the subspace based image set representation may not work well if the actual set
data lie on complex manifolds.

4 Experimental Results

We perform extensive experiments on four standard datasets capturing a wide
range of operating conditions for three image set classification applications: face
recognition, object categorization and hand gesture recognition.

4.1 Dataset Details

The Honda/UCSD dataset [22] contains 59 video sequences of 20 different sub-
jects. The faces in every frame of the video sequences are automatically detected
using Viola and Jones algorithm [23], resized to 20 × 20 grayscale images and
histogram equalized (Fig. 3).

The YouTube Celebrities dataset [24] is the most challenging dataset and
contains 1910 video sequences of 47 celebrities (actors, actresses and politicians)
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which are collected from YouTube. Most videos are low resolution and recorded
at high compression ratio, which leads to noisy and low-quality image frames.
The clips contain different numbers of frames (from 8 to 400). Face image in each
frame was first automatically detected by applying [23] and resized to a 20× 20
(Fig. 3). We propose to compute the UoCTTI variant [25] of the histogram of
oriented gradients (HOG) features using a cell size of 6 for each image. This
results in a feature dimension d = 279 for each image. This simple and efficient
pre-processing step has two advantages. Firstly, it reduces the feature dimension
from 400 to 279 which significantly speeds up all the algorithms. Secondly, in
our experiments we observed a significant increase in the accuracy of all the
algorithms by using these features compared to using raw pixels values.

The ETH-80 dataset [26] contains images of 8 object categories where each
category has 10 different objects of the same class. Each object has 41 images
taken at different views which form an image set. We use 20 × 20 intensity images
for the task of classifying an image set of an object into a known category. ETH-
80 is a challenging database because it has fewer images per set, significant
appearance variations across objects of the same class and larger viewing angle
differences within each image set (Fig. 3).

The Cambridge Hand Gesture dataset [27] (Fig. 3) contains 900 image se-
quences of 9 gesture classes, which are defined by 3 primitive hand shapes and 3
primitive motions. Each class has 100 image sequences (5 different illuminations,
10 arbitrary motions, performed by 2 subjects). The recognition task involves
the classification of different hand shapes as well as different hand motions at
the same time. Following the experimental protocol of [28], the 100 videos of
each gesture class are divided into five illumination sets (Set1, Set2, Set3, Set4
and Set5) where Set5 is chosen as the training images. The training set is further
divided randomly into gallery and validation sets (10 sequences in the gallery
and the other 10 sequences for validation). Since we do not use the validation

Table 1. Dataset details including maximum, minimum and average images per set.

Dataset Classes Sets/class Min images/set Max images/set Avg images/set

Honda/UCSD 20 1-5 13 782 267

Youtube Celeb 47 9 8 347 150

ETH-80 8 10 41 41 41

Cambridge 9 100 37 119 71

set we discard it. Individual images are converted to grayscale and resized to
60 × 80. UoCTTI variant of HOG features with a cell size of 18 are calculated
for each image resulting in a feature dimension d = 372. Details of all datasets
used in our experiments are given in Table 1.
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4.2 Experimental Setup

For each dataset the important parameters to compute the image set represen-
tations are selected according to the recommendations of the original authors.
For the affine hull based image set representations we preserve 98% total energy
while computing the subspace bases for all the databases. For manifold represen-
tation Kd the parameters are configured as recommended in [2] for different data
sets. The maximum canonical correlation is used in defining MMD. The number
of connected nearest neighbours for computing geodesic distance in MMD is set
to 12. For computing the Log Euclidean Kl and Cholesky kernels Kc the covari-
ance matrix is first regularized by adding a small perturbation to its diagonal
the (absolute of the smallest eigenvalue). The parameters of the MKLDR algo-
rithm is configured according to the recommendations of the original authors
[17]. For deriving the kernels, the optimal value of the Gaussian scale factor σ
in (1) is selected automatically using the binary search algorithm of [17]. We
set the parameter α to a small value of 10−6 when using the Elastic Net. The
parameters λjs can be automatically determined since the Elastic Net algorithm
provides the optimal solution path of λjs for given α [29].

For Honda dataset each subject has one image set in the gallery and the rest
are used as probes. For the proposed SKL algorithm, at least two image sets
per class are required in the gallery data. Therefore, when the gallery contained
only one image set for a particular class, we randomly partitioned the set into
two non-overlapping sub-sets. For Youtube dataset, the whole dataset is equally
divided into five folds with minimal overlapping [4]. Each subject has 9 image
sets. In each fold we use three image sets per class in the gallery and six image
sets per class as probes. For ETH-80 dataset the gallery consists of 5 image sets
per class and the remaining 5 image sets per class are used a probes. For Honda,
ETH and Cambridge datasets, experiments are repeated 10-folds with different
gallery probe combinations in each fold.

4.3 Results and Discussion

Table 2 summarizes our experimental results. Average recognition rates and
standard deviations are reported for 10-fold experiments on Honda, ETH and
Cambridge datasets and five fold experiments on the Youtube dataset.

On the Honda/UCSD dataset, the structure based image set representa-
tions perform better than the nearest sample based representations. Therefore
the kernels derived from the subspace bases and the covariance representation
(Kb,Kl,Kc) outperform the kernels derived from the affine hull representations
(Ka,Ks,Km) when used individually with KLDA. This is because there are
enough samples available with adequate variations per set to accurately esti-
mate the structure of the image set. The accuracy of the average kernel with
KLDA is less than the maximum performing kernel Kb. This is because the lower
performing kernels slightly degrade the performance of the overall mixture. Simi-
larity, the MKLDR [17] method also uses all the kernels with different weights to
compute the discriminative subspace and its performance is therefore affected by
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Table 2. Comparison of average recognition rates and standard deviations (%).

Method Kernel(s) Honda Youtube ETH-80 Cambridge

KLDA

Ka 93.84±2.47 72.51±3.07 74.80±2.83 36.68 ± 1.95
Ks 95.33±1.62 74.01±4.10 72.38±3.21 31.54 ± 1.89
Km 92.64±2.71 69.19±3.39 71.11±4.67 48.56 ± 1.50
Kb 100±0.0 71.64±4.42 90.25±1.16 88.30 ± 0.08
Kl 100±0.0 67.54±4.77 89.07±1.72 90.04± 0.05
Kc 96.26±4.18 67.13±4.01 90.65±1.58 87.09 ± 1.65
Kd 97.69±2.54 66.23±4.98 85.25±3.12 64.41 ± 1.25
Avg K 97.69±1.45 72.12±3.62 87.01±5.94 87.19 ± 1.59

MKLDR [17] All 98.71±0.18 74.08 ± 4.62 90.70±5.62 90.11 ± 1.80

Proposed SKL Subset 100±0 77.07 ± 2.01 94.75±0.31 92.43±0.04

the poor performing kernels in this experiment. On the other hand the proposed
SKL algorithm learns a sparse linear combination of only the most discrimina-
tive kernels to achieve the highest classification accuracy. Figure 2-(a) shows the
weights calculated by the proposed algorithm for the Honda dataset. The pro-
posed algorithm automatically learns high weights for the subspace based kernel
Kb and the log-Euclidean kernel Kl while the other kernels gets zero weights.

On the Youtube celebrities dataset, the kernels computed from the near-
est neighbour based image set representations (Ka,Ks,Km) perform better
than the kernels computed from the structure based image set representations
(Kb,Kl,Kc). The reason being the useful variations in the image set data in
this dataset is relatively low and the subspace or covariance structure cannot be
estimated accurately. Our use of the HoG features also reduces the effects of il-
lumination and pose variations which brings the individual samples belonging to
the same classes closer. The accuracy of the MKLDR[17] is affected by the poor
performing kernels. The proposed SKL algorithm achieves the highest accuracy
by combing only the sample based kernels (Ka and Ks). Figure 2-(b) shows that
the MKLDR algorithm assigns almost equal weights to all the representations
which degrade its overall accuracy. By learning a combination of only the best
subset of kernel, the proposed SKL algorithm outperform the other algorithms.

On the ETH-80 dataset, the kernels derived from the sample based rep-
resentations (Ka,Ks,Km) perform poor. For this dataset, the locations of the
individual samples in the sets cannot provide discriminative information due to
the large intra-set pose variations and significant intra-class object appearance
differences. In this case, the structure of the image set can describe the common
properties of a class more accurately. Therefore, the kernels computed from the
structure based representations show more accuracy on this dataset. Figure 2-(c)
shows that the propose weight learning algorithm has picked only the structure
based kernels. The proposed SKL algorithm learns a combination of only the
structure based kernels and hence outperforms all the others on this dataset.

On the Cambridge Hand Gestures dataset the sample based kernelsKa,Ks,Km

perform very poor when used individually with KLDA. For this dataset, the loca-
tion of each individual sample cannot accommodate the hand gesture variations
adequately. On the other hand the structure based kernels can capture the overall
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Table 3. Comparison with existing image set classification algorithms.

Algorithm Honda Youtube ETH-80 Cambridge

DCC [5] 94.87±2.24 66.75±3.47 90.25±3.06 88.31± 1.34

MMD [2] 94.87±1.16 65.12±4.36 69.72±4.01 58.06±2.71

MDA [6] 96.66±1.73 68.12±4.36 77.75±6.17 26.63±1.61

AHISD [3] 90.25±3.97 71.92±3.55 71.80±8.61 35.91±2.85

CHISD [3] 92.31±2.12 72.83±3.29 72.09±8.11 37.25±2.77

SANP [4] 94.34±1.62 74.01±3.48 72.15±8.61 30.14 ±1.35

CDL [7] 99.23±1.23 68.96±5.29 89.51±3.68 90.18±0.81

Proposed SKL 100±0.0 77.07±2.01 94.75±0.31 92.43±0.04

common properties of two gestures from the same class. Figure 2-(d) shows that
the proposed SKL algorithm selectively learns higher weights for the structure
based kernels for this dataset. Thus the the proposed SKL algorithm signifi-
cantly outperforms the MKLDR algorithm. We also performed experiments to
evaluate the performance of the proposed algorithm by setting λ = 0 and α = 0.
We noted an accuracy drop from {100, 77.07, 94.75, 92.43}% to {98.00, 73.12,
92.0, 88.44}% for Honda, Youtube, ETH-80 and Cambridge datasets respec-
tively. This confirms that the proposed sparsity constraints indeed improve the
classification accuracy.

4.4 Comparison with existing image set classification algorithms

The proposed SKL algorithm is also compared with seven state-of-the-art image
set classification techniques including DCC [5], MMD [2], MDA [6], AHISD [3],
CHISD [3], SANP [4] and CDL [7]. We have used the implementations from the
original authors, except for MDA and CDL. For MDA, Hu’s [4] implementation
is used, while we have our own implementation of CDL. For a fair comparison,
we follow the same protocol used previously by [3], [4], [6] and [7]. The existing
image set classification algorithms consider only a single image set representa-
tion therefore the accuracies of these approaches vary for different properties of
the image sets. Table 3 summarizes our results. Note that due to the use of HoG
features the accuracy of the previous image set classification algorithms on the
Youtube dataset has significantly increased. Also, the accuracy of AHISD and
SANP algorithms is slightly lower compared to using the affine hull based kernel
Ka and SANP kernel Ks used with KLDA. This is because AHISD and SANP
algorithms do not perform any discriminant analysis after distance calculation,
while our use of KLDA increases the inter-class similarity further. Because the
proposed SKL algorithm combines only the best image set representations there-
fore it has shown the best accuracy on all the databases compared to the existing
algorithms.

4.5 Computational time

Table 4 shows the average execution times of all algorithms for 10-fold exper-
iments on Honda dataset using a Pentium 3.4GHz CPU with 8GB RAM and
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MATLAB implementation. The computational complexity of the proposed al-
gorithm involves the time to compute different kernel matrices plus the time of
SKL and KLDA. In the training stage, the time taken to compute all the ker-
nels is about 1100.02s while the SKL takes 0.2s. Note that in the testing phase
we only compute the kernels which have non-zero weights which significantly
reduces computation time compared to that of MKLDR.

Table 4. Execution times of matching one probe image set with 20 gallery image sets
of the Honda/UCSD

Algorithm Training time (sec) Testing time (sec)

DCC [5] 0.91 0.30

MMD [2] 184.57 38.10

MDA [6] 10.55 33.00

AHISD [3] N/A 9.10

CHISD [3] N/A 110.10

SANP [4] N/A 5.01

CDL [7] 1.10 0.15

MKLDR [17] >100 56.12

Proposed SKL >100 1.01

5 Conclusion

We proposed a sparse kernel learning (SKL) algorithm for image set classifica-
tion. By optimizing a sparse linear discriminant objective function, the proposed
algorithm automatically learns the most discriminative subset of kernels from
a large pool. Experimental results on four standard datasets showed that the
proposed SKL algorithm outperforms current state of the art image set clas-
sification algorithms. The proposed algorithm also outperformed the standard
feature combination methods such as MKLDR with significant improvement in
the test set matching time.
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